The Various Analytical Techniques for the Analysis of Sodium Chloride in Food Samples and Their Advantages and Disadvantages

Mike Philpott B.Sc(Hons), MBA. Analytical Chemistry Division, Institute for Soil, Climate and Water (ARC-ISCW)
Approaches for determination of NaCl (salt)

- Direct determination of NaCl (solids only)
- Determination of Na\(^+\) and Cl\(^-\) (or Cl)
- Determination of Na\(^+\) only
- Determination of Cl\(^-\) only
- Determination of Total Cl only
Techniques

- **XRD** (X-Ray Diffraction) (NaCl directly in solids)
- **XRF** (X-Ray Fluorescence) (Na & Tot. Cl in solids)
- **Optical Atomic Emission**
 - Flame (Na only)
 - Plasma (Na, Cl? & other elements)
Techniques Cl⁻ only

- Titration with silver nitrate (AgNO₃)
- Ion Chromatography (IC)
- Ion Selective Electrode (ISE)
- Colourimetric methods
X-Ray Diffraction (XRD)

- Direct determination of NaCl
- NaCl is a crystalline salt
- Arranged in a crystal lattice with a unique structure
- Only solids
Techniques

• XRD (X-Ray Diffraction) (NaCl directly in solids)

• XRF (X-Ray Fluorescence) (Na & Tot. Cl in solids)

• Optical Atomic Emission
 – Flame (Na only)
 – Plasma (Na, Cl? & other elements)
Advantages: X-Ray techniques (XRD & XRF)

- **XRD**: Sees only actual NaCl as NaCl. Can check for other particular Na salts and/or chlorides.
- **Both**: Not necessary to dissolve or extract solid samples. Same sample preparation used for both.
- **XRF**: Na plus Cl, plus other elements of interest.
Disadvantages: X-Ray techniques (XRD & XRF)

XRD & XRF

- Instrumentation is expensive and requires a highly skilled operator.
- Limitations on sample throughput.
- Must be dry, preferably also ashed and compressed to withstand vacuum conditions.

XRD

Precision (repeatability) not very good.

XRF

Less sensitive to lighter elements (Cl and particularly Na).
Periodic Table

<table>
<thead>
<tr>
<th>H</th>
<th>He</th>
<th>Li</th>
<th>Be</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
</tr>
<tr>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
</tr>
<tr>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
<td>Xe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>Fr</td>
<td>Ra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lanthanide Series:

<table>
<thead>
<tr>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Pm</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho</td>
<td>Er</td>
<td>Tm</td>
<td>Yb</td>
<td>Lu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actinide Series:

<table>
<thead>
<tr>
<th>Ac</th>
<th>Th</th>
<th>Pa</th>
<th>U</th>
<th>Np</th>
<th>Pu</th>
<th>Am</th>
<th>Cm</th>
<th>Bk</th>
<th>Cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es</td>
<td>Fm</td>
<td>Md</td>
<td>No</td>
<td>Lr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Techniques

- **XRD (X-Ray Diffraction)** (NaCl directly in solids)
- **XRF (X-Ray Fluorescence)** (Na & Tot. Cl in solids)
- **Optical Atomic Emission**
 - Flame (Na only)
 - Plasma (Na, Cl? & other elements)
Optical Atomic Emission

Flame Instruments
- Flame Photometer (LPG flame)
- Atomic Absorption (AA) in emission mode (air-acetylene flame)

Plasma Instruments
- ICP (Inductively Coupled Plasma) (ICP-OES): Most popular
- DCP (Direct Current Plasma) and MIP (Microwave Induced Plasma) (both possibly obsolete)
Advantages: Optical Atomic Emission techniques

- **Flame Instruments**: Low cost instrument and running costs (LPG or acetylene)
- **AA**: Can also determine wide variety of other metal elements (separately)
- **ICP**: Can determine Na plus most other elements together

Highly selective: very little spectral interference (none for Na)
Disadvantages: Optical Atomic Emission techniques

- **All:** Need to dissolve analytes: Extraction
 Possible problems with high levels of sugars, fats etc. Digestion or ashing to destroy

- **Flame Instruments:** Limited to metal elements

- **ICP:** Instruments expensive
 High running costs (high argon consumption)
Techniques Cl⁻ only

- Titration with silver nitrate (AgNO₃)
- Ion Chromatography (IC)
- Ion Selective Electrode (ISE)
- Colourimetric methods
Silver Nitrate Titration

Precipitation titration (AgCl precipitates)

- No indicator
- Potassium chromate indicator (Mohr’s method)
- Back titration with potassium thiocyanate, Fe$^{3+}$ indicator (Volhard's method)
- Dichlorofluorescein indicator (Fajans method)
- Potentiometric titration
Advantages of Silver Nitrate titrations

Potentiometric:
- Can be automated

All:
- Low Cost
- High repeatability if sharp end-point
Disadvantages of Silver Nitrate titrations:

- Can see other halides (bromide and iodide) as chloride
- Can’t see if Cl- is from NaCl or other chlorides
Techniques Cl- only

- Titration with silver nitrate (AgNO\textsubscript{3})
- **Ion Chromatography (IC)**
- Ion Selective Electrode (ISE)
- Colourimetric methods
Advantages of Ion Chromatography

- Very selective, negligible interference
- Very sensitive – can determine low concentrations
- Can also determine other anions at same time
Disadvantages of Ion Chromatography

- Instruments expensive
- Low sample throughput
- Can’t use acids to extract samples
- Problems with high fat content in the samples
- Can’t see if Cl\(^-\) is from NaCl or other chlorides
Techniques Cl⁻ only

- Titration with silver nitrate (AgNO₃)
- Ion Chromatography (IC)
- Ion Selective Electrode (ISE)
- Colourimetric methods
Advantages of ISE & Colourimetric methods

- Both: Relatively low cost
- Fairly high sample throughput
- Colourimetric: may be automated (flow systems)
- ISE: Relatively simple operation
Disadvantages of ISE & Colourimetric methods

- Both: Can’t see if Cl\(^{-}\) is from NaCl or other chlorides
- Susceptible to interferences
- Colourimetric: Inaccurate if solution is coloured
References

3. **CHLORIDE – DISSOLVED mg/L Cl - Silver Nitrate Potentiometric**

4. **New colorimetric determination of chloride using mercuric thiocyanate and ferric ion**
 I Iwasaki, S Utsumi... - Bulletin of the Chemical Society of ..., 1952 - Journal@rchiv
Periodic Table